Semiparametric estimation of multinomial discrete-choice models using a subset of choices

نویسندگان

  • Jeremy T. Fox
  • Aprajit Mahajan
  • Rosa Matzkin
  • Aviv Nevo
  • Susanne Schennach
  • Frank Wolak
چکیده

Nonlogit maximum-likelihood estimators are inconsistent when using data on a subset of the choices available to agents. I show that the semiparametric, multinomial maximum-score estimator is consistent when using data on a subset of choices. No information is required for choices outside of the subset. The required conditions about the error terms are the same conditions as for using all the choices. Estimation can proceed under additional restrictions if agents have unobserved, random consideration sets. A solution exists for instrumenting endogenous continuous variables. Monte Carlo experiments show the estimator performs well using small subsets of choices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Smoothed Maximum Score Estimator for Multinomial Discrete Choice Models

We propose a semiparametric estimator for multinomial discrete choice models. The term “semiparametric” refers to the fact that we do not specify a particular functional form for the error term in the random utility function and we allow for heteroskedasticity and serial correlation. Despite being semiparametric, the rate of convergence of the smoothed maximum score estimator is not affected by...

متن کامل

Semiparametric Qualitative Response Model Estimation with Unknown Heteroscedasticity or Instrumental Variables

This paper provides estimators of discrete choice models, including binary, ordered, and multinomial response (choice) models. The estimators closely resemble ordinary and two stage least squares. The distribution of the model’s latent variable error is unknown and may be related to the regressors, e.g., the model could have errors that are heteroscedastic or correlated with regressors. The est...

متن کامل

Moment Inequalities for Semiparametric Multinomial Choice with Fixed Effects∗

We propose a new approach to identification of multinomial choice models with a group (or panel) structure. The utility for each choice is additively separable in a choice-specific fixed effect, a disturbance, and an index function of covariates and parameters. Observations in the same group are assumed to share the same fixed effects. Special cases of our semiparametric model include Chamberla...

متن کامل

Working Paper Series Categorical Data Categorical Data

Categorical outcome (or discrete outcome or qualitative response) regression models are models for a discrete dependent variable recording in which of two or more categories an outcome of interest lies. For binary data (two categories) probit and logit models or semiparametric methods are used. For multinomial data (more than two categories) that are unordered, common models are multinomial and...

متن کامل

Semiparametric Multinomial Logit Models for Analysing Consumer Choice Behaviour

The multinomial logit model (MNL) is one of the most frequently used statistical models in marketing applications. It allows to relate an unordered categorical response variable, for example representing the choice of a brand, to a vector of covariates such as the price of the brand or variables characterising the consumer. In its classical form, all covariates enter in strictly parametric, lin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005